ENUM Tier 2 Infrastructure setup and management

ENUM Tier2

Infrastructure setup and management

Platform requirements

Tier 2 is the working horse of ENUM.

- High-availability (telecom grade)
- Scalability and speed (keep pace with upstream applications)
- Distributed provisioning interface (concurrent users)
- Auditing (version control, roll-back, disaster recovery)
- Standardized NAPTR record formats (interoperability)
- Capacity planning and management
- Interaction with other systems (gateways, SIP Proxies, billing systems)

DNS storage options

Flat file storage

- DNS server requires reload of the zone files after changes
- Reload requires increment of serial number otherwise slaves do not catch up with the master
- Text file management is unsuitable for Tier 2 ENUM

SQL storage

- SQL databases have multiple client capability. This means one can concentrate on the given problem instead of dealing with the interaction of the DNS server
- Solve the master / slave synchronization using SQL back-end replication or other APIs like SOAP/XML

DNS record size issue

- NAPTR results sets might not fit the maximum DNS packet of 512 bytes when using UDP, this is good enough for storing VoIP related records but not when ENUM is used for its full potential
- Recommendations emerged as a rule of thumb don't use more than 5 mappings per number but still depending on actual record size
- Solutions for packet fragmentation EDNS0 and TCP but no standardized way exists today, count on UDP services only
- TCP queries slows down a server and from 15000/UDP queries per second down to 1500 (10:1 ratio) and TCP is subject to easy to perform denial of service attacks

NAPTR record formats

- Use standardized formats (what is standardized?)
- Don't follow blindly RFCs they need adjustment from the realworld, several recommendations emerged out ENUM trials carried so far:

ETSI TS 102 172 V2.0.3T T(2004-11)

http://enum.nic.at/documents/ETSI/Drafts/04bTD022%20Draft%20ts_102172v020003.pdf

ENUM Implementation Issues and Experience http://www.ietf.org/internet-drafts/draft-ietf-enum-experiences-01.txt

NAPTR record formats

Make it easy for end-users. End-users are usually unaware of NAPTR records and the fact that ENUM is used for routing of their voice calls, E164 numbering plans and SIP address formats are better known and understood

Number	+31208005160	Forward to	SIP sip:31208005169@ag-projects.com
Number	+31208005161	Forward to	SIP sip:multic@ag-projects.com
Number	+31208005162	Forward to	SIP sip:31208005162@ag-projects.com
Number	+31208005163	Forward to	SIP sip:31208005163@ag-projects.com
Number	+31208005164	Forward to	✓ SIP sip:999500003@ag-projects.com
Number	+31208005165	Forward to	IAX IAX2 sip:31208005165@vanneerbos.net
Name	+3120800516	Server	MMS g.info.
Name	+3120800516	Server	SMS EMS .info.
Name	+3120800516	Server	IM g.info. Email
Number	+31208005166	Forward to	Unallocated) sip:31208005166@ag-projects.com
Number	+31208005167	Forward to	Tel sip:31208005167@ag-projects.com
Number	+31208005169	Forward to	iFax sip:31208005169@ag-projects.com
			WEB (http) WEB (https) FTP

NAPTR record formats

Provide finest control for those who need all what ENUM can offer including regular expression handling while preventing data input which syntactically or logically does not comply with ENUM purpose

Example: "E2U+MMS" => array("service"=>"E2U+mms", "schemas"=>array("tel:", "mailto:")),

				• •				1	
ŧ	Name	2.6.1.5.0.0.8.0.2.1.3.e164.arpa.	Order	0	Pref 0	Flag U 🛟 Service 🛛	E2U+sip		
			Regexp	! ^.*\$! sip:31208005162@a	g-projects.com	!	Ow
ŧ	Name	3.6.1.5.0.0.8.0.2.1.3.e164.arpa.	Order	100	Pref 0	Flag 🛛 🛟 Servik 🗸	E2U+sip		
			Regexp	! ^.*\$! sip:3120800516:	E2U+h323 E2U+iax	!	Ow
t I	Name	4.6.1.5.0.0.8.0.2.1.3.e164.arpa.	Order	100	Pref 0	Flag 🛛 🛟 Servik	E2U+iax2 E2U+mms		
			Regexp	! ^.*\$! sip:999500003@	E2U+sms E2U+ems	!	Ow
ŧ	Name	5.6.1.5.0.0.8.0.2.1.3.e164.arpa.	Order	0	Pref 0	Flag 🛛 🛟 Servix	E2U+im E2U+mailto		
			Regexp	! ^.*\$! sip:3120800516!	E2U+void:mailto E2U+voice	!	Ow

NAPTR zone management

- ENUM zones may contain large amounts of records. Using the DNS tree model, ENUM can be delegated on a digit boundary, a model that has also disadvantages, a zone must be first delegated and records of one zone cannot stay with two providers
- For Carrier ENUM avoid fragmentation, populate zones efficiently, if you have lot of numbers assigned to your system make sure you split the pot into smaller chunks (make zones of 10/100/1000/10000 numbers) otherwise you might not be able to delegate a continuous large-enough block of numbers to a large reseller
- For User ENUM it makes sense to store separate zones per ENUM number. Whois data may be attached depending on local policy)

NAPTR zone management

ENUM zones have attributes that go beyond DNS concepts. Such attributes should be linked by the provisioning system to the zone. E164 number length (for fixed numbering plans) is an important attribute which influence the number of unique records that can be used within the zone.

Zone configuration	
Zone owner	Reverse Zones 🛟
Zone type	Reverse (in-addr.arpa ip6.int ip6.arpa e164.arpa) / Serial 2004072501
Domain name*	2.4.3.3.3.2.2.0.1.8.7.8.e164.arpa
ENUM settings	
Description	Small resellers
Record delegation	Public - Delegate records to other users
Numbering plan	15 digits 🔅 including country code
Strip	S digits 🛟 for SIP accounts

Edit DNS master zone 2.4.3.3.3.2.2.0.1.8.7.8.e164.arpa (ENUM: +878102233342)

Capacity management

Capacity management is important, allocating and delegating numbers requires skills (see IPV4 address depletion). Provisioning engine must have up to date information about ENUM zone usage, record ownership, current zone population, percentage of delegation, usage ratio, unallocated or unassigned records.

Туре	ENUN	1 Prov	vider	\$			4		<u>.</u>				CID 7	9 RID	sort	Zo
					12 zone(s) found. To find	and char	nge a	8 2049	es fe	xra ci	ustom	er fill in F	ID and CID or click on	zones link in	DNS customers	s.
[d.	ZID	CID	RID Zone	e (domain name)	Description	Delega	ted	Usage		Size	Whoi	s Type	Server	Template	Serial	(
1.	474120	79	79 <mark>ENU</mark>	M freenum.org: +31800							0	Master	pdns.dns-hosting.info	0	2004072101	2
2.	474130	79	79 <mark>ENU</mark>	M e164.arpa: +878102233344	Free SIP service			1%		1000	0	Master	pdns.dns-hosting.info	0	2004102002	2
3.	474384	79	79 <mark>ENU</mark>	M e164.arpa: +878102233343	One address Prepaid					1000	0	Master	pdns.dns-hosting.info	0	2004102002	2
4.	474184	79	79 <mark>ENU</mark>	M e164.arpa: +8781022333421				10%		100	0	Master	pdns.dns-hosting.info	0	2004071901	2
5.	474121	79	79 ENU	M e164.arpa: +87810223334201				70%	,	10	0	Master	pdns.dns-hosting.info	0	2004071901	2
6.	474294	79	79 <mark>ENU</mark>	M e164.arpa: +8781022333420	SME	60%	(6)			100	0	Master	pdns.dns-hosting.info	0	2004071901	2
7.	474271	79	79 <mark>ENU</mark>	M e164.arpa: +878102233342	Small resellers	40%	(4)			1000	Ø	Master	pdns.dns-hosting.info	0	2004072501	2
8.	474293	79	79 ENU	M e164.arpa: +87810223334	Medium resellers	20%	(2)			0000	0	Master	pdns.dns-hosting.info	0	2004071902	2
9.	474270	79	79 <mark>ENU</mark>	M e164.arpa: +8781022333	Major Resellers	10%	(1)		1(10000	0	Master	pdns.dns-hosting.info	0	2004062301	2
10.	474372	79	79 <mark>ENU</mark>	M e164.arpa: +3120800516	AG Office			90%		10	0	Master	pdns.dns-hosting.info	0	2004071901	2
11.	71	79	79 <mark>ENU</mark>	M e164.arpa: +3120800						0000	0	Master	pdns.dns-hosting.info	0	2003071601	2
12.	72	79	79 ENU	M e164.arpa: +31			(2)				0	Master	ns1.dns-hosting.info	0	2004090901	2

ENUM record generator

Create SIP records

Existing records will not be overwritten.

Generate

ENUM zone information

Zone name	2.4.3.3.3.2.2.0.1.8.7.	8.e164.arpa.
E.164 domain	+87	8102233342
Delegated zones		4
Delegated records		400
Exiting NAPTR records		0
Assigned NAPTR records		0 of 0
Maximum records		1000
Population		
Population allocated		40%
NAPTR record temp	ate	
Prefix	+878102233342	
E164 number length		15 digits
ENUM service		E2U+sip
SIP domain	umts.ro	\$
Strip from SIP address	first 6 digits 233342XX	(🛟
Record owner		

 \checkmark

250 ‡ records

Engine for bulk provisioning

Carrier-ENUM zones are often provisioned in bulk, numbering plan generators or imports from external data sources should be possible

Provisioning scenario

Please generate 10000 SIP records in domain example.com with associated 10000 NAPTR records under private tree 1.3.e164-provider.nl.

Operations and usage issues

- Make sure each location has built-in resilience (master/slave clustering or load balancer). Consider hosting DNS servers next to the SIP servers (if ENUM provider == SIP Provider)
- There is no clear consensus about how to handle multiple ENUM priorities in the client side (not really an ENUM problem). For example SER supports Q values which can be populated from NAPTR priorities but no sequential forking was until recently available (through SER AVP module provided by Voice System)
- Client side make sure the DNS resolver results delivered to upstream application are used not only in the right order but also in sync with SIP events (don't use the results from an early DNS query for a transaction that is in progress using target obtains from a later query)
- Avoid recurring DNS queries that have been performed earlier in routing decision - Network optimization (maybe the new ENUM dip indicator?)

VoIP related issues

- **Timers**. ENUM is used primarily by SIP. DNS recursive query algorithm have timeouts (up to 75 seconds) that conflict with SIP timers. If the first DNS server is not reachable by the time a second server is queried (>5 seconds), SIP request has timed-out. Question for DNS specialists, how to deal with this?
- High-availability. Distributed SIP location servers may fail if used for incoming calls should clients be located behind NAT because only the server that handled the registration maintains an open tunnel to the client. SIP registration Expires (coming from client side) may in the end decide the maximum downtime for a fail-over or a dispatcher mechanism should be built in the distributed SIP farm.

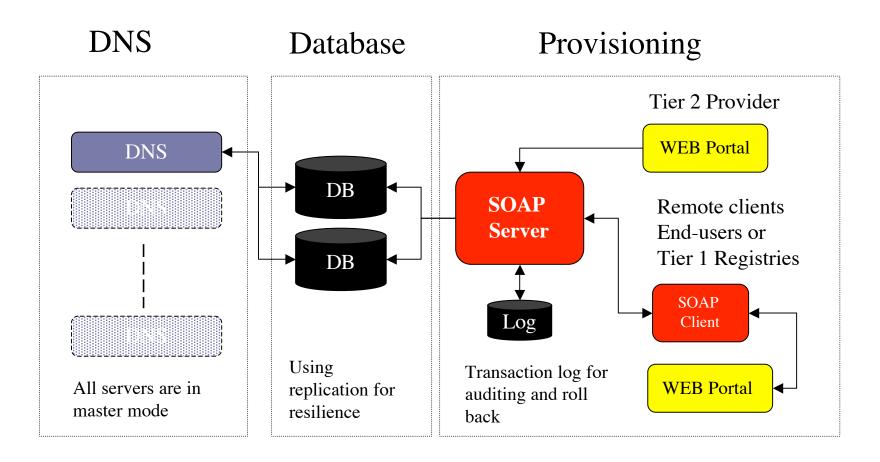
Accounting issues

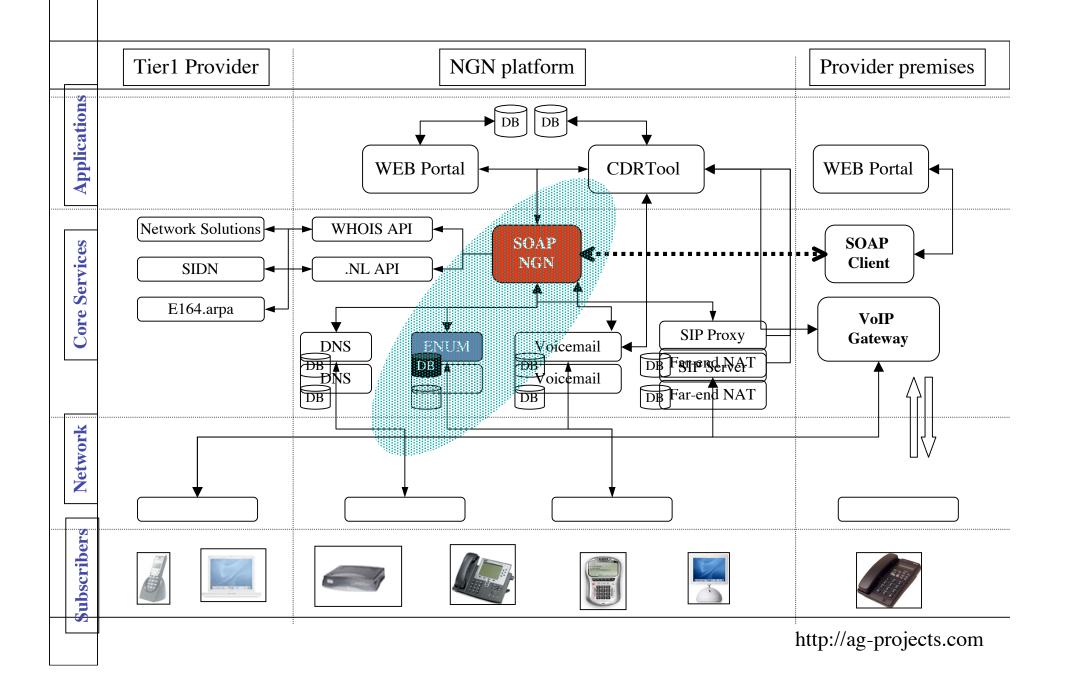
Following the RFC for SIP RADIUS accounting, billing the call to the right entity is an issue. For example: Adrian.Georgescu@call.arcor.de dials +878102233342019 which maps in ENUM to sip: 31208005169@ag-projects.com that has unconditional redirection to his mobile phone (PSTN). Standard Radius SIP attributes will log:

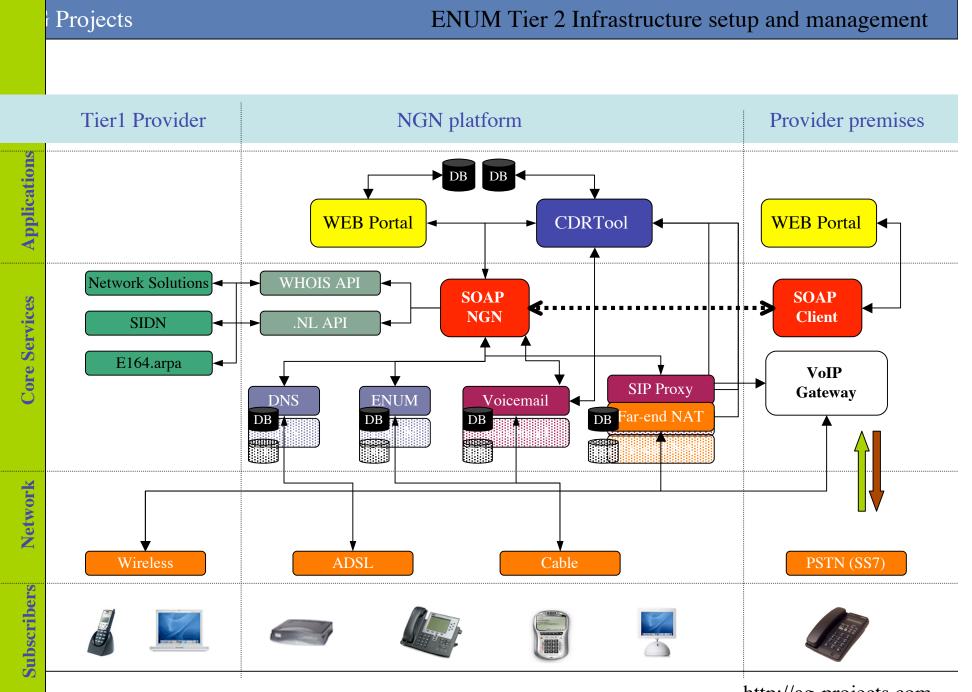
```
Acct-Status-Type = Start
User-Name = "Adrian.Georgescu@call.arcor.de"
Calling-Station-Id = "sip:Adrian.Georgescu@call.arcor.de:7060"
Called-Station-Id = "sip:+878102233342019@call.arcor.de"
Sip-Translated-Request-URI = "sip:0031620534309@voipgw02.budgetphone.nl"
```

Where can we find the billing party? We cannot really tell from a standard Radius packet. Make sure by using ENUM your accounting system can deal with the associated VoIP traffic:

From 2004-11-25 08:48 to 2							
Call date-time / Local date-time	SIP Caller/SIP Billing Party	In SIP Destination	Out Dur	Price	KBIn	KBOut	User agents/Status
1 2004-11-25 09:51:21 2004-11-25 09:51:21 Europe/Amsterdam	adrian.georgescu@call.arcor.de 31238D05169@ag-projects.com	<u>In</u> +02233342019@call.arcor.de +31620534309 (Nederland mobiel 31620)	<u>Out</u> 00:02	0.0526	10.76	13.14	X-Lite release GSM 1103m + Cisco- SIPGateway/IOS- 12.x Invite / Ok (200)


Found 8 CDRs for normalization.


Provisioning issues


NAPTR changes should be propagated in real time in a system where:

- New records are acquired from ENUM registrars
- Conflicts must be resolved between concurrent request for same number
- Atomicity is critical in SIP centric environments ENUM may be just an associated attribute but failure to create associate ENUM records might require roll-back of the entire transaction
- Provisioning is done by ENUM Tier2 provider, its resellers and end-users can change their own records
- A mechanism should guarantee data integrity (syntax and logical correctness of the user input), auditing and data recovery

Tier 2 concept platform

This presentation is available at:

http://ag-projects.com/docs/Present/ETSI-20041130.pdf

Thank you, Adrian Georgescu ag@ag-projects.com